Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534393

RESUMO

Neuromesodermal progenitors (NMPs), serving as the common origin of neural and paraxial mesodermal development in a large part of the trunk, have recently gained significant attention because of their critical importance in the understanding of embryonic organogenesis and the design of in vitro models of organogenesis. However, the nature of NMPs at many essential points remains only vaguely understood or even incorrectly assumed. Here, we discuss the nature of NMPs, focusing on their dynamic migratory behavior during embryogenesis and the mechanisms underlying their neural vs. mesodermal fate choice. The discussion points include the following: (1) How the sinus rhomboidals is organized; the tissue where the neural or mesodermal fate choice of NMPs occurs. (2) NMPs originating from the broad posterior epiblast are associated with Sox2 N1 enhancer activity. (3) Tbx6-dependent Sox2 repression occurs during NMP-derived paraxial mesoderm development. (4) The nephric mesenchyme, a component of the intermediate mesoderm, was newly identified as an NMP derivative. (5) The transition of embryonic tissue development from tissue-specific progenitors in the anterior part to that from NMPs occurs at the forelimb bud axial level. (6) The coexpression of Sox2 and Bra in NMPs is conditional and is not a hallmark of NMPs. (7) The ability of the NMP pool to sustain axial embryo growth depends on Wnt3a signaling in the NMP population. Current in vitro models of NMPs are also critically reviewed.


Assuntos
Células-Tronco Neurais , Animais , Células-Tronco Neurais/fisiologia , Mesoderma , Camadas Germinativas , Transdução de Sinais , Sistema Nervoso
2.
Results Probl Cell Differ ; 72: 11-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509250

RESUMO

Pluripotent stem cell lines established from early-stage embryos of mammals or other species represent the embryonic stages before the initiation of somatic development. In these stem cell lines, cell proliferation capacity is maintained while developmental progression is arrested at a specific developmental stage that is determined by the combination of culture conditions, cell state, and species. All of these pluripotent stem cell lines express the transcription factors (TFs) Sox2 and Pou5f1 (Oct3/4); hence, these TFs are often regarded as pluripotency factors. However, the regulatory roles of these TFs vary depending on the cell line type. The cell lines representing preimplantation stage embryonic cells (mouse embryonic stem cells, mESCs) are regulated principally by the combined action of Sox2 and Pou5f1. Human ESCs and mouse epiblast stem cells (EpiSCs) represent immature and mature epiblast cells, respectively, where Otx2 and Zic2 progressively take over the preimplantation stage's regulatory roles of Sox2 and Pou5f1. This transition of the core TFs occurs to prepare for the initiation of somatic development.


Assuntos
Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Camadas Germinativas/metabolismo , Linhagem Celular , Diferenciação Celular , Mamíferos
3.
Results Probl Cell Differ ; 72: 27-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509251

RESUMO

As epiblast cells initiate development into various somatic cells, they undergo a large-scale reorganization, called gastrulation. The gastrulation of the epiblast cells produces three groups of cells: the endoderm layer, the collection of miscellaneous mesodermal tissues, and the ectodermal layer, which includes the neural, epidermal, and associated tissues. Most studies of gastrulation have focused on the formation of the tissues that provide the primary route for cell reorganization, that is, the primitive streak, in the chicken and mouse. In contrast, how gastrulation alters epiblast-derived cells has remained underinvestigated. This chapter highlights the regulation of cell and tissue fate via the gastrulation process. The roles and regulatory functions of neuromesodermal progenitors (NMPs) in the gastrulation process, elucidated in the last decade, are discussed in depth to resolve points of confusion. Chicken and mouse embryos, which form a primitive streak as the site of mesoderm precursor ingression, have been investigated extensively. However, primitive streak formation is an exception, even among amniotes. The roles of gastrulation processes in generating various somatic tissues will be discussed broadly.


Assuntos
Gástrula , Gastrulação , Camundongos , Animais , Mesoderma , Endoderma , Desenvolvimento Embrionário
4.
Artigo em Inglês | MEDLINE | ID: mdl-38509249

RESUMO

All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early  post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Camadas Germinativas/metabolismo , Linhagem Celular , Mamíferos
5.
Results Probl Cell Differ ; 72: 119-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509255

RESUMO

Many organs are composed of epithelial and mesenchymal tissue components. These two tissue component types develop via reciprocal interactions. However, for historical and technical reasons, the effects of the mesenchymal components on the epithelium have been emphasized. Well-documented examples are the regionally specific differentiation of the endoderm-derived primitive gut tube under the influence of surrounding mesenchyme. In contrast to a pile of reports on mesenchyme-derived signaling mechanisms, few studies have depicted the epithelial action in depth. This chapter highlights an example of an opposite action from the epithelial side, which was found in esophagus development.


Assuntos
Organogênese , Transdução de Sinais , Epitélio , Mesoderma , Diferenciação Celular
6.
Results Probl Cell Differ ; 72: 61-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509252

RESUMO

Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.


Assuntos
Gástrula , Camadas Germinativas , Camadas Germinativas/metabolismo , Ectoderma/metabolismo , Desenvolvimento Embrionário , Encéfalo
7.
Results Probl Cell Differ ; 72: 127-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509256

RESUMO

Encountering a developmental process confined to a limited time window or a restricted embryonic area, one may deem that the mechanism to activate the process occurs with such precision in temporal and spatial terms. However, in many instances, the activation mechanism is initiated in a broad time and space, but the mechanism is actuated only when repressive mechanisms are lifted. Thus, the operation of repressive processes is essential for precise developmental regulation. Repressive regulations occur at various levels. The following representative repressive regulations and their consequences at various levels will be discussed: intercellular signaling, epigenetic regulation, transcriptional regulation, and posttranscriptional regulation.


Assuntos
Epigênese Genética , Histonas , Histonas/metabolismo
8.
Results Probl Cell Differ ; 72: 83-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509253

RESUMO

It has long been assumed that a specific cell type arises following stepwise specification of cells corresponding to the branching of cell lineages. However, accumulating evidence indicates that multiple and even remote cell lineages can lead to the development of the same cells. Four examples giving different yet new insights will be discussed: skeletal muscle development from precursors with distinct initial histories of transcriptional regulation, lens cell development from remote lineages yet sharing basic transcription factors, blood cell development under intersectional pathways, and neural tissue development from cardiac precursors through the manipulation of just one component of epigenetic regulation. These examples provide flexible and nondogmatic perspectives on developmental cell regulation, fundamentally revising the old model relying on cell lineages.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula , Diferenciação Celular
9.
Results Probl Cell Differ ; 72: 145-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509257

RESUMO

Enhancers are the primary regulatory DNA sequences in eukaryotes and are mostly located in the non-coding sequences of genes, namely, intergenic regions and introns. The essential characteristic of an enhancer is the ability to activate proximal genes, e.g., a reporter gene in a reporter assay, regardless of orientation, relative position, and distance from the gene. These characteristics are ascribed to the interaction (spatial proximity) of the enhancer sequence and the gene promoter via DNA looping, discussed in the latter part of this chapter.Developmentally regulated genes are associated with multiple enhancers carrying distinct cell and developmental stage specificities, which form arrays on the genome. We discuss the array of enhancers regulating the Sox2 gene as a paradigm. Sox2 enhancers are the best studied enhancers of a single gene in developmental regulation. In addition, the Sox2 gene is located in a genomic region with a very sparse gene distribution (no other protein-coding genes in ~1.6 Mb in the mouse genome), termed a "gene desert," which means that most identified enhancers in the region are associated with Sox2 regulation. Furthermore, the importance of the Sox2 gene in stem cell regulation and neural development justifies focusing on Sox2-associated enhancers.


Assuntos
Elementos Facilitadores Genéticos , Genes Controladores do Desenvolvimento , Camundongos , Animais
10.
Results Probl Cell Differ ; 72: 167-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509258

RESUMO

Enhancers are classified into two classes based on various criteria. Class I enhancers participate primarily in finely tuned cell-specific regulation, as exemplified by the neural enhancers discussed in Chap. 9 . They are activated by simultaneous binding of transcription factors (TFs) to adjacent sites in the core sequence and are marked by moderate levels of H3K27ac modification. Class II enhancers are activated by the reiterated binding of the same TFs at multiple sites and are marked by high levels of H3K27ac modification. Class II enhancers are exemplified by enhancers in the SCR downstream of the Sox2 gene, as also discussed in Chap. 9 . Both classes of enhancers activate transcription similarly with low selectivity toward the promoters.The genomic loci broadly covered by high-level H3K27ac modification were once dubbed "Super-enhancers," implying that they are densely packed enhancers with superpowers in gene regulation. However, marking with H3K27ac modification does not predict the enhancer activity of a sequence; a "Super enhancer" region includes a few ordinary Class II enhancers. Currently, the most reliable criterion for enhancer prediction is cross-species sequence conservation.The mechanism by which transcription factors find and stay on the target enhancer site remains elusive. Results from two approaches, single-molecule live imaging and kinetic analysis using FRAP, are discussed.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Cinética , Regulação da Expressão Gênica , Genômica/métodos
11.
Results Probl Cell Differ ; 72: 105-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509254

RESUMO

The classic conception of tissue regeneration assumed the existence of tissue-proper regeneration stem cells that are set aside during normal tissue development and reserved as stem cells for regeneration. However, modern studies using cell tracing and other approaches have ruled out the presence of regeneration-proper stem cells in most cases in vertebrate tissue regeneration. The only experimentally validated regeneration-dedicated reserve cells are the satellite cells in skeletal muscle (e.g., Michele 2022) (see Sect. 5.2.3 ). Here, we will first discuss examples of large-scale tissue regeneration, liver regeneration in mammals, and lens and limb regeneration in newts. Then, attempts to widen the tissue regeneration capacity in mammals with exogenous transcription factor genes will be reviewed.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Animais , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco , Regeneração , Mamíferos , Diferenciação Celular/genética
12.
Results Probl Cell Differ ; 72: 193-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509259

RESUMO

A striking discovery in recent decades concerning the transcription factor (TF)-dependent process was the production of induced pluripotent stem cell (iPSCs) from fibroblasts by the exogenous expression of the TF cocktail containing Oct3/4 (Pou5f1), Sox2, Klf4, and Myc, collectively called OSKM. How fibroblast cells can be remodeled into embryonic stem cell (ESC)-like iPSCs despite high epigenetic barriers has opened a new essential avenue to understanding the action of TFs in developmental regulation. Two forerunning investigations preceded the iPSC phenomenon: exogenous TF-mediated cell remodeling driven by the action of MyoD, and the "pioneer TF" action to preopen chromatin, allowing multiple TFs to access enhancer sequences. The process of remodeling somatic cells into iPSCs has been broken down into multiple subprocesses: the initial attack of OSKM on closed chromatin, sequential changes in cytosine modification, enhancer usage, and gene silencing and activation. Notably, the OSKM TFs change their genomic binding sites extensively. The analyses are still at the descriptive stage, but currently available information is discussed in this chapter.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Fibroblastos/metabolismo
13.
Front Cell Dev Biol ; 11: 1260528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405136

RESUMO

The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.

14.
Front Cell Dev Biol ; 10: 1019845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274851

RESUMO

Live imaging of migrating and interacting cells in developing embryos has opened a new means for deciphering fundamental principles in morphogenesis and patterning, which was not possible with classic approaches of experimental embryology. In our recent study, we devised a new genetic tool to sparsely label cells with a green-fluorescent protein in the broad field of chicken embryos, enabling the analysis of cell migration during the early stages of brain development. Trajectory analysis indicated that anterior epiblast cells from a broad area gather to the head axis to form the brain primordia or brain-abutting head ectoderm. Grafting the mCherry-labeled stage (st.) 4 node in an anterior embryonic region resulted in the anterior extension of the anterior mesendoderm (AME), the precursor for the prechordal plate and anterior notochord, from the node graft at st. 5. Grafting the st. 4 node or st. 5 AME at various epiblast positions that otherwise develop into the head ectoderm caused local cell gathering to the graft-derived AME. The node was not directly associated with this local epiblast-gathering activity. The gathered anterior epiblast cells developed into secondary brain tissue consisting of consecutive brain portions, e.g., forebrain and midbrain or midbrain and hindbrain, reflecting the brain portion specificities inherent to the epiblast cells. The observations indicated the bipotentiality of all anterior epiblast cells to develop into the brain or head ectoderm. Thus, a new epiblast brain field map is proposed, allowing the reinterpretation of classical node graft data, and the role of the AME is highlighted. The new model leads to the conclusion that the node does not directly participate in brain development.

15.
Methods Mol Biol ; 2490: 205-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486248

RESUMO

This chapter describes the protocol to derive definitive endoderm cells from epiblast stem cells (EpiSCs) via a process analogous to gastrulation in embryos. The basis of this protocol mimicking the in vivo gastrulation process makes a contrast with those using sequential administration of pharmacological molecules and recombinant signaling proteins even at nonphysiological levels. In the experimental setup, EpiSCs are first freed from the dish-adherent condition to form free-floating aggregates, where endoderm precursor pools are produced. Embedding the EpiSC aggregates in the Matrigel allows the endoderm precursors to interact with the Matrigel mimicking the laminin-rich basement membrane underlying the egg cylinder epiblast in embryos, and let the precursors migrate into the Matrigel-filled external zone and develop into endodermal epithelial tissues.


Assuntos
Endoderma , Laminina , Diferenciação Celular/fisiologia , Colágeno , Combinação de Medicamentos , Endoderma/metabolismo , Laminina/metabolismo , Proteoglicanas/metabolismo
16.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132990

RESUMO

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Assuntos
Gástrula , Camadas Germinativas , Animais , Aves , Encéfalo , Movimento Celular , Ectoderma/metabolismo
17.
Dev Dyn ; 249(12): 1425-1439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32633438

RESUMO

BACKGROUND: Hedgehog signaling has various regulatory functions in tissue morphogenesis and differentiation. To investigate its involvement in anterior pituitary precursor development and the lens precursor potential for anterior pituitary precursors, we investigated Talpid mutant Japanese quail embryos, in which hedgehog signaling is defective. RESULTS: Talpid mutants develop multiple pituitary precursor-like pouches of variable sizes from the oral ectoderm (OE). The ectopic pituitary pouches initially express the pituitary-associated transcription factor (TF) LHX3 similarly to Rathke's pouch, the genuine pituitary precursor. The pouches coexpress the TFs SOX2 and PAX6, a signature of lens developmental potential. Most Talpid mutant pituitary pouches downregulate LHX3 expression and activate the lens-essential TF PROX1, leading to the development of small lens tissue expressing α-, ß-, and δ-crystallins. In contrast, mutant Rathke's pouches express a lower level of LHX3, which is primarily localized in the cytoplasm, and activate the lens developmental pathway. CONCLUSIONS: Hedgehog signaling in normal embryos regulates the development of Rathke's pouch in two steps. First, by confining Rathke's pouch development in a low hedgehog signaling region of the OE. Second, by sustaining LHX3 activity to promote anterior pituitary development, while inhibiting ectopic lens development.


Assuntos
Ectoderma/embriologia , Desenvolvimento Embrionário/fisiologia , Proteínas Hedgehog/metabolismo , Fator de Transcrição PAX6/metabolismo , Hipófise/embriologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular/fisiologia , Coturnix , Ectoderma/metabolismo , Organogênese/fisiologia , Hipófise/metabolismo , Transdução de Sinais/fisiologia
18.
iScience ; 23(7): 101260, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32585597

RESUMO

DNA methylation is a universal epigenetic mechanism involved in regulation of gene expression and genome stability. The DNA maintenance methylase DNMT1 ensures that DNA methylation patterns are faithfully transmitted to daughter cells during cell division. Because loss of DNMT1 is lethal, a pan-organismic analysis of DNMT1 function is lacking. We identified new recessive dnmt1 alleles in medaka and zebrafish and, guided by the structures of mutant proteins, generated a recessive variant of mouse Dnmt1. Each of the three missense mutations studied here distorts the catalytic pocket and reduces enzymatic activity. Because all three DNMT1 mutant animals are viable, it was possible to examine their phenotypes throughout life. The consequences of genome-wide hypomethylation of DNA of somatic tissues in the Dnmt1 mutants are surprisingly mild but consistently affect the development of the lymphoid lineage. Our findings indicate that developing lymphocytes in vertebrates are sensitive to perturbations of DNA maintenance methylation.

19.
Dev Growth Differ ; 62(4): 243-259, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32277710

RESUMO

Endoderm precursors expressing FoxA2 and Sox17 develop from the epiblast through the gastrulation process. In this study, we developed an experimental system to model the endoderm-generating gastrulation process using epiblast stem cells (EpiSCs). To this end, we established an EpiSC line i22, in which enhanced green fluorescent protein is coexpressed with Foxa2. Culturing i22 EpiSCs as aggregates for a few days was sufficient to initiate Foxa2 expression, and further culturing of the aggregates in Matrigel promoted the sequential activation of transcription factor genes involved in endoderm precursor development, e.g., Eomes, Gsc, and Sox17. In aggregation culture of i22 cells for 3 days, all cells expressed POU5F1, SOX2, and E-cadherin, a signature of the epiblast, whereas expression of GATA4 and SOX17 was also activated moderately in dispersed cells, suggesting priming of these cells to endodermal development. Embedding the aggregates in Matrigel for further 3 days elicited migration of the cells into the lumen of laminin-rich matrices covering the aggregates, in which FOXA2 and SOX17 were expressed at a high level with the concomitant loss of E-cadherin, indicating the migratory phase of endodermal precursors. Prolonged culturing of the aggregates generated three segregating cell populations found in post-gastrulation stage embryos: (1) definitive endoderm co-expressing high SOX17, GATA4, and E-cadherin, (2) mesodermal cells expressing a low level of GATA4 and lacking E-cadherin, and (3) primed epiblast cells expressing POU5F1, SOX2 without E-cadherin. Thus, aggregation of EpiSCs followed by embedding of aggregates in the laminin-rich matrix models the gastrulation-dependent endoderm precursor development.


Assuntos
Endoderma/citologia , Matriz Extracelular/metabolismo , Camadas Germinativas/citologia , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Endoderma/metabolismo , Camadas Germinativas/metabolismo , Camundongos , Camundongos Endogâmicos DBA
20.
Genes Cells ; 25(4): 242-256, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997540

RESUMO

The transcription factor (TF) SOX2 regulates various stem cells and tissue progenitors via functional interactions with cell type-specific partner TFs that co-bind to enhancer sequences. Neural progenitors are the major embryonic tissues where SOX2 assumes central regulatory roles. In order to characterize the partner TFs of SOX2 in neural progenitors, we investigated the regulation of the D1 enhancer of the Sox2 gene, which is activated in the embryonic neural tube (NT) and neural crest (NC), using chicken embryo electroporation. We identified essential TF binding sites for a SOX, and two ZIC TFs in the activation of the D1 enhancer. By comparison of dorso-ventral and antero-posterior patterns of D1 enhancer activation, and the effect of mutations on the enhancer activation patterns with TF expression patterns, we determined SOX2 and ZIC2 as the major D1 enhancer-activating TFs. Binding of these TFs to the D1 enhancer sequence was confirmed by chromatin immunoprecipitation analysis. The combination of SOX2 and ZIC2 TFs activated the enhancer in both the NT and NC. These results indicate that SOX2 and ZIC2, which have been known to play major regulatory roles in neural progenitors, do functionally cooperate. In addition, the recently demonstrated SOX2 expression during the NC development is accounted for at least partly by the D1 enhancer activity. Deletion of the D1 enhancer sequence from the mouse genome, however, did not affect the mouse development, indicating functional redundancies of other enhancers.


Assuntos
Elementos Facilitadores Genéticos/genética , Crista Neural/metabolismo , Tubo Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Embrião de Galinha , Galinhas , Embrião de Mamíferos/metabolismo , Camundongos , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...